Skip to content

Agentic AI Development

Build intelligent AI agents that can reason, plan, and coordinate using the PHP MCP SDK. This section covers everything you need to create sophisticated AI systems.

What are Agentic AI Systems?

Agentic AI systems are intelligent agents that can:

  • Reason about problems and make decisions
  • Plan multi-step workflows to achieve goals
  • Coordinate with other agents and systems
  • Learn from interactions and improve over time

Core Concepts

Agent Architecture

┌─────────────────┐    ┌─────────────────┐    ┌─────────────────┐
│   LLM Core      │◄──►│  Agent Logic    │◄──►│  MCP Tools      │
│   (Reasoning)   │    │  (Planning)     │    │  (Actions)      │
└─────────────────┘    └─────────────────┘    └─────────────────┘
         │                       │                       │
         ▼                       ▼                       ▼
┌─────────────────┐    ┌─────────────────┐    ┌─────────────────┐
│    Memory       │    │  Goal Tracking  │    │   External      │
│   (Context)     │    │   (State)       │    │   Systems       │
└─────────────────┘    └─────────────────┘    └─────────────────┘

Key Components

  1. Reasoning Engine: LLM that makes decisions
  2. Planning System: Breaks down complex goals
  3. Tool Orchestration: Coordinates MCP tool usage
  4. Memory Management: Maintains context and state
  5. Goal Tracking: Monitors progress and adapts

Agent Examples

Building AI Agents

Learn to create intelligent agents with:

  • Decision-making logic
  • Goal-oriented behavior
  • Context awareness
  • Error recovery

Multi-Agent Systems

Coordinate multiple specialized agents:

  • Role-based task distribution
  • Inter-agent communication
  • Conflict resolution
  • Collaborative problem-solving

Agent Orchestration

Advanced coordination patterns:

  • Workflow management
  • Resource allocation
  • Performance optimization
  • Scaling strategies

Real-World Applications

Personal Assistant Agent

An AI agent that can:

  • Manage calendars and schedules
  • Send emails and messages
  • Research information
  • Make reservations
php
class PersonalAssistantAgent extends Agent
{
    public function processRequest(string $request): AgentResponse
    {
        $intent = $this->analyzeIntent($request);

        return match($intent->type) {
            'schedule' => $this->handleScheduling($intent),
            'research' => $this->handleResearch($intent),
            'communication' => $this->handleCommunication($intent),
            default => $this->handleGeneral($intent)
        };
    }
}

Code Review Agent

Specialized agent for code analysis:

  • Static code analysis
  • Security vulnerability detection
  • Performance optimization suggestions
  • Code style enforcement

Data Analysis Agent

Intelligent data processing:

  • Automated report generation
  • Pattern recognition
  • Anomaly detection
  • Predictive analytics

Agent Patterns

Rule-Based Agents

Simple agents that follow predefined rules:

php
class RuleBasedAgent extends Agent
{
    private array $rules;

    public function decide(Context $context): Action
    {
        foreach ($this->rules as $rule) {
            if ($rule->matches($context)) {
                return $rule->getAction();
            }
        }

        return new DefaultAction();
    }
}

Goal-Oriented Agents

Agents that work towards specific objectives:

php
class GoalOrientedAgent extends Agent
{
    private Goal $currentGoal;
    private Planner $planner;

    public function act(): Action
    {
        if ($this->currentGoal->isComplete()) {
            $this->currentGoal = $this->getNextGoal();
        }

        $plan = $this->planner->createPlan($this->currentGoal);
        return $plan->getNextAction();
    }
}

Learning Agents

Agents that improve through experience:

php
class LearningAgent extends Agent
{
    private Memory $memory;
    private LearningAlgorithm $learner;

    public function learn(Experience $experience): void
    {
        $this->memory->store($experience);
        $this->learner->updateModel($experience);
    }
}

Tools for Agents

Planning Tools

  • Goal decomposition
  • Task scheduling
  • Resource allocation
  • Constraint satisfaction

Memory Tools

  • Context storage and retrieval
  • Knowledge base management
  • Experience logging
  • Pattern recognition

Communication Tools

  • Inter-agent messaging
  • Human interaction
  • External API integration
  • Event publishing

Advanced Topics

Multi-Agent Coordination

  • Agent discovery and registration
  • Task distribution algorithms
  • Conflict resolution strategies
  • Performance monitoring

Agent Security

  • Access control and permissions
  • Input validation and sanitization
  • Audit logging and monitoring
  • Secure communication protocols

Performance Optimization

  • Caching strategies
  • Parallel processing
  • Resource management
  • Scalability patterns

Getting Started

  1. Basic Agent Tutorial - Create your first AI agent
  2. Working Examples - Study complete implementations
  3. Best Practices - Learn proven patterns
  4. Community Examples - Share and learn

Tools and Libraries

Required Dependencies

bash
composer require dalehurley/php-mcp-sdk
composer require openai-php/client  # For LLM integration

Optional Enhancements

bash
composer require predis/predis       # For memory/caching
composer require monolog/monolog     # For logging
composer require symfony/messenger   # For async processing

Community

Join the growing community of agentic AI developers:

Ready to build intelligent agents? Start with Building AI Agents! 🤖

Released under the MIT License.